MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 1

Due on Wednesday, Sep 2
Exercises from the textbook. 1.13, 1.14, 1.15, 1.40, 1.45, 1.47(a), 1.51

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. Prove that for any sets A and B that are subsets of an ambient set $U,(A \cup B)^{c}=A^{c} \cap B^{c}$, where the complements are taken within U. Draw the corresponding Venn diagram in your solution; it will guide you through your argument.
2. Let \mathbb{R}^{+}denote the set of non-negative real numbers and let the function $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be given by the formula $f(x)=\frac{x^{2}}{x^{2}+1}$. Determine the domain of f, its target set and its image. Find the simplest possible description of the image.
3. Let $f: X \rightarrow Y$. For $S \subseteq X$, let $f(S)$ denote the set $\{f(x): x \in S\}$, in other words,

$$
f(S)=\{y \in Y: \text { there is } x \in X \text { with } f(x)=y\} .
$$

Let $A, B \subseteq X$.
(a) Prove that $f(A \cup B)=f(A) \cup f(B)$.
(b) Prove that $f(A \cap B) \subseteq f(A) \cap f(B)$.
(c) Give an example of $f: X \rightarrow Y$ and sets $A, B \subseteq X$ that shows that the two sets in part (b) may not be equal (i.e. $f(A \cap B)$ can be a strict subset of $f(A) \cap f(B)$).
(d) Compare this problem with 1.51 .

Exercises for fun, not for credit (don't have to turn in).
From the textbook: 1.25, 1.47(b)

